Parkinson’s Progression Halted by Inhibiting Enzyme

Summary: Researchers discovered that inhibiting a specific enzyme, USP30, in a mouse model protects dopamine-producing neurons, which are typically lost as the disease progresses.

This groundbreaking finding suggests a new therapeutic avenue that could slow or even prevent Parkinson’s progression.

The study involved both genetic and pharmacological methods to demonstrate the protective effects of USP30 inhibition on neuronal health and disease symptoms.

Key Facts:

  1. The study showed that inhibiting the USP30 enzyme protected dopamine-producing neurons in a Parkinson’s mouse model.
  2. Researchers used both genetic ‘knockout’ models and a proprietary molecule to block USP30, leading to increased clearance of damaged mitochondria.
  3. These findings offer new hope for developing treatments that could potentially modify the course of Parkinson’s disease.

Source: BIDMC

In a new study, investigators at Beth Israel Deaconess Medical Center (BIDMC) have shed new light on key cellular processes involved in the progression of Parkinson’s disease (PD).

The research is published in the journal Nature Communications.

Affecting around 10 million people worldwide, Parkinson’s disease is a neurodegenerative disorder caused by the progressive loss of the group of brain cells responsible for producing dopamine, a neurotransmitter that plays a critical role in regulating movement and coordination.

This shows a neuron.
“The two experimental strategies together are much more convincing than either alone,” said Simon, who is also a professor of neurology at Harvard Medical School. Credit: Neuroscience News

As these neurons degenerate and dopamine levels decrease, individuals with Parkinson’s disease experience a wide range of symptoms, including tremors, stiffness and difficulties with balance and coordination.

Researchers in the lab of senior author David K. Simon, MD, Ph.D., director of the Parkinson’s Disease & Movement Disorders Center at BIDMC, in collaboration with colleagues at the University of Cambridge and Mission Therapeutics, performed complementary experiments showing that inhibiting a specific enzyme in a mouse model protects the dopamine-producing neurons that are normally lost as PD progresses, effectively halting the progression of the disease.

The findings open the door to the development of novel therapeutics targeting the enzyme that may slow or prevent the progression of Parkinson’s disease in people—a major unmet need.

“Our lab is focused on working out the origins of Parkinson’s disease and it is our hope that—one day—we will be able to slow down or even prevent disease progression in patients,” said first author Tracy-Shi Zhang Fang, Ph.D., an instructor in Simon’s lab. “The current study’s findings pave the way toward that future.”

Evidence suggests the dopamine-producing cells die off in Parkinson’s disease because something has gone awry with the clearance of the cells’ old and dysfunctional mitochondria—organelles that are the source of cells’ energy, sometimes called the powerhouse of the cell.

Simon and colleagues focused on an enzyme called USP30 which plays a role in this process. In a mouse model engineered to lack the gene that produces the enzyme—known as a “knockout model” because one specific gene has been deleted for the purposes of experimentation—the researchers observed that the loss of USP30 protected against the development of Parkinson’s-like motor symptoms, increased clearance of damaged mitochondria in neurons, and protected against the loss of dopamine-producing neurons.

In a second set of experiments, the team validated the knockout studies using a proprietary molecule developed by Mission Therapeutics to block the enzyme’s action in the dopamine-producing neurons.

As in the knockout mice, inhibiting the enzyme’s action increased clearance of dysfunctional mitochondria and protected dopamine-producing neurons.

“The two experimental strategies together are much more convincing than either alone,” said Simon, who is also a professor of neurology at Harvard Medical School.

“Together, our very significant findings support the idea that reducing USP30 warrants further testing for its potentially disease-modifying effects in PD.”

About this Parkinson’s disease research news

Author: Jacqueline Mitchell
Source: BIDMC
Contact: Jacqueline Mitchell – BIDMC
Image: The image is credited to Neuroscience News

Original Research: Open access.
Knockout or inhibition of USP30 protects dopaminergic neurons in a Parkinson’s disease mouse model” by Tracy-Shi Zhang Fang et al. Nature Communications


Abstract

Knockout or inhibition of USP30 protects dopaminergic neurons in a Parkinson’s disease mouse model

Mutations in SNCA, the gene encoding α-synuclein (αSyn), cause familial Parkinson’s disease (PD) and aberrant αSyn is a key pathological hallmark of idiopathic PD.

This α-synucleinopathy leads to mitochondrial dysfunction, which may drive dopaminergic neurodegeneration. PARKIN and PINK1, mutated in autosomal recessive PD, regulate the preferential autophagic clearance of dysfunctional mitochondria (“mitophagy”) by inducing ubiquitylation of mitochondrial proteins, a process counteracted by deubiquitylation via USP30.

Here we show that loss of USP30 in Usp30 knockout mice protects against behavioral deficits and leads to increased mitophagy, decreased phospho-S129 αSyn, and attenuation of SN dopaminergic neuronal loss induced by αSyn. These observations were recapitulated with a potent, selective, brain-penetrant USP30 inhibitor, MTX115325, with good drug-like properties.

These data strongly support further study of USP30 inhibition as a potential disease-modifying therapy for PD.

Join our Newsletter
I agree to have my personal information transferred to AWeber for Neuroscience Newsletter ( more information )
Sign up to receive our recent neuroscience headlines and summaries sent to your email once a day, totally free.
We hate spam and only use your email to contact you about newsletters. You can cancel your subscription any time.